Практическое занятие №2.

Задачи для самостоятельной работы студента

Решение задач по темам: Нахождение предела числовой последовательности.

1) Доказать, что $\{x_n\}_{n\in \mathbb{N}}$ является бесконечно малой последовательностью.

a)
$$x_n = \frac{(-1)^{n+1}}{n}$$
; 6) $x_n = \frac{2n}{n^3 + 1}$;

- 2) Доказать, что $\{x_n\}_{n\in\mathbb{N}}$, является бесконечно большой последовательностью, если $x_n = \lg(\lg n) \ (n \geqslant 2)$
- 3) Найти следующие пределы

a)
$$\lim_{n \to \infty} \frac{(n+1)^3 - (n-1)^3}{(n+1)^2 + (n-1)^2}$$
 b) $\lim_{n \to \infty} \frac{n^3 - 100n^2 + 1}{100n^2 + 15n}$ c) $\lim_{n \to \infty} \frac{10\,000n}{n^2 + 1}$.

$$\lim_{n \to \infty} \frac{\sqrt[3]{n^2 \sin n!}}{n+1} \cdot \lim_{n \to \infty} \frac{(-2)^n + 3^n}{(-2)^{n+1} + 3^{n+1}}.$$

4) Пользуясь теоремой о существовании предела монотонной и ограниченной последовательности, доказать сходимость

a)
$$x_n = \frac{1}{1^2+1} + \frac{1}{2^2+1} + \dots + \frac{1}{n^2+1}$$
. b) $x_n = \left(1 + \frac{1}{1^2+1}\right) \left(1 + \frac{1}{2^2+1}\right) \dots \left(1 + \frac{1}{n^2+1}\right)$.

ОБРАЗЦЫ РЕШЕНИЯ ЗАДАЧ

Задачи из Лекции №2 (ФИТ)

<u>Пример 1.</u> Доказать, что $x_n = (-1)^n n$ является бесконечно большой.

<u>Пример 2.</u> Доказать, что $x_n = \frac{1}{n!}$ является бесконечно малой.

<u>Пример 3.</u> Рассмотрим последовательность y_1 , =0,3, y_2 ,=0,33, y_3 ,=0,333, ...

Пример 4. Пусть
$$x_n = \frac{n}{n+1}$$
, $(n=1,2,...)$. Доказать, что $\lim_{n\to\infty} x_n = 1$.

<u>Пример 5.</u> Пользуясь теоремой о существовании предела монотонной и ограниченной последовательности, доказать сходимость $x_n = \left(1 + \frac{1}{2}\right)\left(1 + \frac{1}{4}\right)..\left(1 + \frac{1}{2^n}\right)$.

<u>Пример6.</u> Пользуясь теоремой о существовании предела монотонной и ограниченной последовательности, доказать сходимость $x_n = \frac{10}{1} \cdot \frac{11}{3} \cdot ... \frac{n+9}{2n-1}$.

ЗАДАЧИ С РЕШЕНИЯМИ

Примеры:

$$\lim_{n\to\infty}\frac{n^2-n}{n-\sqrt{n}}=\lim_{n\to\infty}\frac{(n-\sqrt{n})(n+\sqrt{n})}{n-\sqrt{n}}=\lim_{n\to\infty}(n+\sqrt{n})=+\infty;$$

$$\lim_{n \to \infty} \frac{5 \cdot 3^n}{3^n - 2} = \lim_{n \to \infty} \frac{5}{1 - \frac{2}{3^n}} = 5 \frac{1}{\lim_{n \to \infty} \left(1 - \frac{2}{3^n}\right)} = 5. \ \blacktriangle$$

4. Найти предел $\lim_{n\to\infty} (\sqrt{n^2+n}-n)$.

 Δ Отметим, что этот предел является неопределенностью типа $\infty - \infty.$ Имеем

$$\lim_{n \to \infty} (\sqrt{n^2 + n} - n) = \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + n} + n} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n} + 1}} = \frac{1}{\lim_{n \to \infty} \left(\sqrt{1 + \frac{1}{n}}\right) + 1} = \frac{1}{2}. \quad \blacktriangle$$

5. Вычислить $\lim_{n\to\infty} \frac{\sqrt{n}\cos n}{n+1}$.

 \triangle Последовательность $\{\cos n\}$ ограничена, а $\left\{\frac{\sqrt{n}}{n+1}\right\}$ бесконечно малая, так как

$$\lim_{n \to \infty} \frac{\sqrt{n}}{n+1} = \lim_{n \to \infty} \frac{\frac{1}{\sqrt{n}}}{1 + \frac{1}{n}} = \frac{\lim_{n \to \infty} \frac{1}{\sqrt{n}}}{\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)} = 0.$$

Отсюда следует, что их произведение является бесконечно малой последовательностью, то есть

$$\lim_{n\to\infty} \frac{\sqrt{n}\cos n}{n+1} = 0. \blacktriangle$$

Примеры: Найти пределы последовательностей:

1) $\lim_{n\to\infty} \frac{3n^2-n+2}{5n^2+2}$;

 \bigcirc 1) Преобразуем выражение, стоящее под знаком предела, поделив числитель и знаменатель на старшую степень n, т. е. на n^2 :

$$\frac{3n^2 - n + 2}{5n^2 + 2} = \frac{3 - \frac{1}{n} + \frac{2}{n^2}}{5 + \frac{2}{n^2}}.$$

Отсюда, используя теорему о действиях над пределами, получим:

$$\lim_{n \to \infty} \frac{3n^2 - n + 2}{5n^2 + 2} = \lim_{n \to \infty} \frac{3 - \frac{1}{n} + \frac{2}{n^2}}{5 + \frac{2}{n^2}} = \frac{\lim_{n \to \infty} (3 - \frac{1}{n} + \frac{2}{n^2})}{\lim_{n \to \infty} (5 + \frac{2}{n^2})} = \frac{\lim_{n \to \infty} 3 - \lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} \frac{2}{n^2}}{\lim_{n \to \infty} 5 + \lim_{n \to \infty} \frac{2}{n^2}} = \frac{3 - \lim_{n \to \infty} \frac{1}{n} + 2 \lim_{n \to \infty} \frac{1}{n^2}}{5 + 2 \lim_{n \to \infty} \frac{1}{n^2}} = \frac{3 - 0 + 0}{5 + 0} = \frac{3}{5}.$$

В последних равенствах мы воспользовались тем, что предел константы — константа, а также тем, что последовательности $\left\{\frac{1}{n}\right\}$ и $\left\{\frac{1}{n^2}\right\}$ — бесконечно малые.

Окончательно, $\lim_{n\to\infty} \frac{3n^2 - n + 2}{5n^2 + 2} = \frac{3}{5}$.

2)
$$\lim_{n\to\infty} (\sqrt{n+1} - \sqrt{n-1});$$

Домножим и разделим выражение под знаком предела на сопряженное к нему, после чего воспользуемся формулой разности квадратов:

$$\sqrt{n+1} - \sqrt{n-1} = \frac{(\sqrt{n+1} - \sqrt{n-1})(\sqrt{n+1} + \sqrt{n-1})}{\sqrt{n+1} + \sqrt{n-1}} = \frac{(\sqrt{n+1})^2 - (\sqrt{n-1})^2}{\sqrt{n+1} + \sqrt{n-1}} = \frac{(n+1) - (n-1)}{\sqrt{n+1} + \sqrt{n-1}} = \frac{2}{\sqrt{n+1} + \sqrt{n-1}}.$$

Поэтому

$$\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n-1}) = \lim_{n \to \infty} \frac{2}{\sqrt{n+1} + \sqrt{n-1}} = 2 \lim_{n \to \infty} \frac{1}{\sqrt{n+1} + \sqrt{n-1}}.$$

Поскольку последовательность $\sqrt{n+1}+\sqrt{n-1}$ — бесконечно большая, то последовательность $\frac{1}{\sqrt{n+1}+\sqrt{n-1}}$ — бесконечно малая. Отсюда $\lim_{n\to\infty}\frac{1}{\sqrt{n+1}+\sqrt{n-1}}=0$, а значит, и $\lim_{n\to\infty}(\sqrt{n+1}-\sqrt{n-1})=0$.

3)
$$\lim_{n\to\infty}\frac{\sqrt{n^3}}{\sqrt{n}+1}.$$

3) Поделим числитель и знаменатель дроби на старшую степень n (выбираем из двух вариантов $\sqrt{n^3}$ и \sqrt{n}), т.е. на $\sqrt{n^3} = n^{3/2}$. Тогда

$$\frac{\sqrt{n^3}}{\sqrt{n}+1} = \frac{1}{\frac{\sqrt{n}}{\sqrt{n^3}} + \frac{1}{\sqrt{n^3}}} = \frac{1}{\sqrt{\frac{1}{n^2} + \frac{1}{\sqrt{n^3}}}} = \frac{1}{\frac{1}{n} + \frac{1}{\sqrt{n^3}}}.$$

Оба слагаемых в знаменателе последней дроби, т. е. $\frac{1}{n}$ и $\frac{1}{\sqrt{n^3}}$, —

бесконечно малые последовательности, следовательно, вся эта дробь — бесконечно большая последовательность. Отсюда

$$\lim_{n \to \infty} \frac{\sqrt{n^3}}{\sqrt{n} + 1} = \lim_{n \to \infty} \frac{1}{\frac{1}{n} + \frac{1}{\sqrt{n^3}}} = \infty.$$

67.
$$\lim_{n\to\infty}\left(\frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+\ldots+\frac{1}{n(n+1)}\right).$$

■ Заметим, что

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \ldots + \frac{1}{n(n+1)} = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \ldots + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1}.$$

Тогда

$$\lim_{n\to\infty}\left(\frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+\ldots+\frac{1}{n(n+1)}\right)=\lim_{n\to\infty}\left(1-\frac{1}{n+1}\right)=1. \blacktriangleright$$